Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142217

RESUMO

Magnetosomes of magnetotactic bacteria consist of magnetic nanocrystals with defined morphologies enclosed in vesicles originated from cytoplasmic membrane invaginations. Although many proteins are involved in creating magnetosomes, a single magnetosome protein, Mms6 from Magnetospirillum magneticum strain AMB-1, can direct the crystallization of magnetite nanoparticles in vitro. The in vivo role of Mms6 in magnetosome formation is debated, and the observation that Mms6 binds Fe3+ more tightly than Fe2+ raises the question of how, in a magnetosome environment dominated by Fe3+, Mms6 promotes the crystallization of magnetite, which contains both Fe3+ and Fe2+. Here we show that Mms6 is a ferric reductase that reduces Fe3+ to Fe2+ using NADH and FAD as electron donor and cofactor, respectively. Reductase activity is elevated when Mms6 is integrated into either liposomes or bicelles. Analysis of Mms6 mutants suggests that the C-terminal domain binds iron and the N-terminal domain contains the catalytic site. Although Mms6 forms multimers that involve C-terminal and N-terminal domain interactions, a fusion protein with ubiquitin remains a monomer and displays reductase activity, which suggests that the catalytic site is fully in the monomer. However, the quaternary structure of Mms6 appears to alter the iron binding characteristics of the C-terminal domain. These results are consistent with a hypothesis that Mms6, a membrane protein, promotes the formation of magnetite in vivo by a mechanism that involves reducing iron.


Assuntos
Magnetossomos , Magnetospirillum , Proteínas de Bactérias/química , FMN Redutase/metabolismo , Óxido Ferroso-Férrico/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Ferro/metabolismo , Lipídeos/análise , Lipossomos/metabolismo , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Proteínas de Membrana/metabolismo , NAD/metabolismo , Ubiquitinas/metabolismo
3.
Nanotechnology ; 29(35): 355603, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29877867

RESUMO

DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Processos Fotoquímicos , Prata/química , DNA/ultraestrutura , Microscopia de Força Atômica , Espectrofotometria Ultravioleta
4.
Langmuir ; 28(9): 4274-82, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22316331

RESUMO

Surface sensitive X-ray scattering and spectroscopic studies have been conducted to determine structural properties of Mms6, the protein in Magnetospirillum magneticum AMB-1 that is implicated as promoter of magnetite nanocrystals growth. Surface pressure versus molecular area isotherms indicate Mms6 forms stable monolayers at the aqueous/vapor interface that are strongly affected by ionic conditions of the subphase. Analysis of X-ray reflectivity from the monolayers shows that the protein conformation at the interface depends on surface pressure and on the presence of ions in the solutions, in particular of iron ions and its complexes. X-ray fluorescence at grazing angles of incidence from the same monolayers allows quantitative determination of surface bound ions to the protein showing that ferric iron binds to Mms6 at higher densities compared to other ions such as Fe(2+) or La(3+) under similar buffer conditions.


Assuntos
Proteínas de Bactérias/metabolismo , Óxido Ferroso-Férrico/química , Ferro/metabolismo , Nanopartículas/química , Nanotecnologia , Ligação Proteica
5.
Biomacromolecules ; 13(1): 98-105, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22112204

RESUMO

Highly ordered mineralized structures created by living organisms are often hierarchical in structure with fundamental structural elements at nanometer scales. Proteins have been found responsible for forming many of these structures, but the mechanisms by which these biomineralization proteins function are generally poorly understood. To better understand its role in biomineralization, the magnetotactic bacterial protein, Mms6, which promotes the formation in vitro of superparamagnetic magnetite nanoparticles of uniform size and shape, was studied for its structure and function. Mms6 is shown to have two phases of iron binding: one high affinity and stoichiometric and the other low affinity, high capacity, and cooperative with respect to iron. The protein is amphipathic with a hydrophobic N-terminal domain and hydrophilic C-terminal domain. It self-assembles to form a micelle, with most particles consisting of 20-40 monomers, with the hydrophilic C-termini exposed on the outside. Studies of proteins with mutated C-terminal domains show that the C-terminal domain contributes to the stability of this multisubunit particle and binds iron by a mechanism that is sensitive to the arrangement of carboxyl/hydroxyl groups in this domain.


Assuntos
Proteínas de Bactérias/química , Ferro/química , Nanopartículas de Magnetita/química , Proteínas de Bactérias/genética , Nanopartículas de Magnetita/ultraestrutura , Mutação , Tamanho da Partícula , Estabilidade Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...